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On Gaussian Distribution 
 
Gaussian distribution is defined as follows: 
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The function )(
~

xf x  is clearly positive valued. Before calling this function as a probability 

density function, we should check whether the area under the curve is equal to 1 or not.  
 
R1.1: Area under Gaussian Distribution [Signal Analysis, Papoulis]  
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This shows that )(
~

xf x is a valid probability density function.  

 
R1.2: Mean and Variance Calculation for Gaussian Distribution;   
 
Mean: It can be noted that the distribution is symmetric around xx µ= , that is 

).()(
~~

xfxf xxxx −=+ µµ  We know that the mean value should be located at the center of 

symmetry then  xx µ= .  

 
We can show this result as follows: By a simple change of variables, we get 

∫∫∫ −−=++== dxxfxdxxfxdxxxfx xxxxxxx )()()()()(
~~~

µµµµ . But since we have 
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)()(
~~

xfxf xxxx −=+ µµ , ∫∫ +−=++= dxxfxdxxfxx xxxxxx )()()()(
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µµµµ , then 
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=+−+++= ∫∫ . 

 
Variance: This is more tricky, [Probability, Papoulis]. The area under the Gaussian 

distribution is equal to 1, that is 1
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relation wrt to µ , we get 
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 The last equation can be written as 0)()(
~

=−∫ dxxfx xµ , showing one more time that 

the mean of Gaussian distribution is µ. Taking derivative of  0)()(
~

=−∫ dxxfx xµ  

relation with respect to  µ for a second time, we get 
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, showing that the variance of Gaussian 

distribution is 2
xσ . 

 
Taking derivative wrt to a “constant” (such as µ  in here) is a powerful calculation/proof 
tool. This process can be done if the relation whose derivative is taken is valid for a 
continuum of µ  values. In our case, the area under Gaussian distribution is 1 for any 

value of µ . Hence 1
2

1
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µ  is valid for µ∀ .  

 
A second note is on the interchange of derivative an integral operators. This step looks 
innocent but it is indeed treacherous. We have to verify the interchange in general. If you 
have one sided or double sided integrals, (One sided integral has upper or lower limit as 

∞± , double sided integrals have upper/lower limits as ∞−  and ∞ .); the integrals may or 
may not converge. The interchange of integrals or derivatives operators is the interchange 
of two limiting operations. (Remember derivative is also defined at a limit of  0→h   or 

∞→h/1 ) . One has to be careful about this interchange. The integrals studied in the 
probability course in general behave nicely (positive and unit area functions). But we 
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should always be careful when we exchange operators involving infinite or infinitesimal 
quantities.   
 
 
R1.3: The distribution of y=ax +b where x is normal distributed:  
The distribution of bxay +=

~~
 can be expressed using the fundamental theorem for 

functions of random variables: )(
||

1
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by
f

a
yf xy

−= . When the definition for 

Gaussian density is substituted for )(
~

xf x  we get 
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From the last equation, we note that 
~
y  is also Gaussian distributed with mean 

)( ba x +µ and variance 22
xa σ .  

 
We reach an important conclusion that by scaling and biasing a Gaussian r.v., we get 
another Gaussian r.v. with different mean and variance.  
The mean and variance of the new Gaussian random variable can be easily calculated 
using expectation operator, babaxEyEy x +=+== µ}{}{  (and a similar relation for 

variance). And the distribution of 
~
y can be written by using the calculated mean and 

variance. We know that if a random variable is Gaussian distributed, we only need to 
calculate its mean and variance to write the distribution. As an example let )1,0(:

~
Nz  

(Gaussian distributed or normal distributed with zero mean and unit variance) , then 
1010

~~
−= zw  is N(-10,100) since the mean of 1010

~
−z  is -10 and its variance is 

( ) .100}{100})10{(})10()1010({}){( 222
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R1.4: Moment Generating Function: 
Let 

~
z  be zero mean, unit variance Gaussian distribution: )1,0(:

~
Nz . The moment 

generating function of 
~
z is dzeeeEs

z
szsz 2
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1
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 . We can write sz-z2/2 as a 

perfect square and a correction term as follows:  
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2222 sszszz
sz

z +−−=−−=−− . This process is known as completing the 

square and frequently used. When this relation is substituted to )(sΦ , we get 



Prepared by: 
Çağatay Candan 

METU, Electrical Engin. Dept. 
Dec. 2011 

document  version:1.2 
 

2222

)(

22

222222

2

1

2

1

2

1
)(

szsszsz
sz edzeedzeedzees ====Φ

−
−

−−

∫∫∫ πππ
.  (The moment 

generating function is valid for all s values.)  
 
When 

~
x  is a Gaussian random variable with mean µ and variance 2σ , ),(: 2

~
σµNx ; 

then we know that 
~
x  can be written as µσ +=

~

2
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zx  where ).1,0(:
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R1.5: Higher Order Moments of Gaussian Distribution: 

Let ),(: 2
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σµNx , we know that 2
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R1.6: Addition of two independent Gaussian r.v.’s, z=x+y, is a Gaussian r.v. 

When two Gaussian distributed independent random variables ),(: 2

~
xxNx σµ  and 

),(: 2

~
yyNy σµ  are added, the resultant distribution is also Gaussian distributed 

),(: 22

~
yxyxNz σσµµ ++ , where 

~~~
yxz += . . This is a property of great importance in 

practice.  
 

This result can be easily shown using moment generating functions. 

}{}{}{}{)( )( syszyxssz
z eEeEeEeEs ===Φ +

 where we have used the 

independence of 
~
x  and 

~
y   in the last equality. From R1.4, we can substitute the moment 

generating function of Gaussian distribution and get 
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we conclude that 
~~~
yxz +=  is indeed Gaussian distributed with mean yx µµ +  and 

variance 22
yx σσ + .  

In the next section we define joint Gaussianity and show that arbitrary linear combination 
of Gaussian random variables result in Gaussian distribution.  

 

Jointly Gaussian Random Variables 
 
We first examine two random variables and then extend to random vectors which is the 
joint distribution of n random variables.  
 
Two random variables 

~
x  and 

~
y are called jointly Gaussian if their joint density can be 

written in the following form:  
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The function fxy(x,y) is clearly positive valued and of finite area (since 
2xe−

upper 
bounded by e-|x| for large x), therefore with proper scaling it can be utilized as density 
function. Note that fxy(x,y)  is a function of two independent variables and has five 
parameters },,,,{ 22 ρσσµµ yxyx . We will attach the labels of mean, variance and 

correlation coefficient to these variables after justifying why we do so.  
 
An alternative (but equivalent) definition for joint Gaussianity can be given as follows: 

~
x  

and 
~
y  are called jointly Gaussian if 

~~~
yxz yx ϖϖ +=  is Gaussian distributed for any value 

of xϖ  and yϖ .  Here 
~
z  is the standard univariable Gaussian distribution that we have 

previously examined. (lso called univariate Gaussian) We take granted the equivalence of 
two definitions and proceed without a proof for now. (The function ),( yxg ΘΘ  and 

related descriptions given in R2.4 (given below) can be formulated as proof.)  
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R2.1: Definition in matrix form:  
The definition can also be written as follows: 
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Note that the argument of the exponential mimics the one dimension Gaussian 
distribution. If you try not to see the terms related to y variable then you have  
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From here we feel that multi-dimensional Gaussian distributions is linked to univariate 
(single variable) Gaussian distribution, which is a fact whose details are examined below.  
 
The equivalency of matrix definition given in R2.1 to the original definition follows very 
simply by calculating the matrix inverse in the matrix definition:  
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 R2.2: Definition for zero mean jointly distributed Gaussian r.v’s. 
When zero is substituted for the mean we get the following  
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If  new random variables 
~
2x  and 

~
2y  are defined from 

~
x and 

~
y  where 

~
x  and 

~
y  are 

jointly Gaussian r.v.’s with zero mean  (the joint pdf is given above) such that   

yyy

xxx

+=
+=

2

2  

The distribution of new random variables is ),(),(
22

yyxxfyxf xyyx −−=  (by 

fundamental theorem) and we see that the distribution of  
~
2x  and 

~
2y  has the form of 

general joint Gaussian density. Since mean values only shift the center of symmetry to a 
point on (x,y) plane, sometimes we prefer to work with zero mean Gaussian distribution 
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and say that this result is also valid for non-zero mean Gaussian distributions. This is due 
to the mentioned shift in the center of symmetry. We have some examples of this 
situation in these notes. s  
 
R2.3: Two independent Gaussian r.v.’s are jointly Gaussian 
Let 

~
x  and 

~
y are independent Gaussian distributed zero mean random variables. (As 

noted in R2.2, the value of the mean is not important in this argument. We prefer to take 
the mean values as zero to simply the presentation.) Then )()(),( yfxfyxf yxxy =  and 

when the definition for the univariate Gaussian distribution is inserted, we get the 
definition of joint Gaussian distribution for zero mean variables. Since the joint density of 
two independent Gaussian random variables can be written in the form required by the 
the joint distribution of Gaussian densities, two independent Gaussian random variables 
are indeed jointly Gaussian. (This is not very surprising, the labels of the distributions 
give away the final conclusion.)  
 
A more surprising result is the next one. If 

~
x and 

~
y  are known to be Gaussian distributed 

(but not independent), the joint distribution of 
~
x and 

~
y is not necessarily is Gaussian. 

That is if marginal densities of 
~
x  and 

~
y  are Gaussian, the joint density of 

~
x  and 

~
y  is not 

necessarily Gaussian.  
A simple example is as follows. Let 

~
x : N(0,1) and 

~~~
xcy =  . Here 

~
c  can take the value of 

1 and –1 with equal probability. It is not very difficult to show that (for EE230 students) 
that 

~
y is also N(0,1). Clearly 

~
y  and 

~
x  are related to each other through a random 

mapping 
~
c .  Therefore 

~
x  and

~
y  are not independent. Furthermore the condition density 

of 
~
y  given 

~
x  is )1(5.0)1(5.0 ++− yy δδ . We show in R2.8 that if 

~
y  and 

~
x  are jointly 

Gaussian distributed, then 
~
y  given 

~
x  is always an univariate Gaussian distribution. 

Therefore the distribution for 
~
y  given 

~
x  which is )1(5.0)1(5.0 ++− yy δδ  gives away 

that  
~
x  and 

~
y  are not jointly Gaussian. For a constructive example see [Probability, 

Papoulis].  
 
R2.4: Moment Generating Function of joint Gaussian r.v.’s x and y (zero mean) 

Independent Case: 
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Dependent Case: Let 

~
'x  and 

~
'y  be independent zero mean Gaussian random variables. 

Lets define the random variables 
~
x  and 

~
y  from 

~
'x  and 

~
'y  as follows: 
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(1) 

 
and  lets define an arbitrary looking function ),( yxg ΘΘ  as follows: 
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Here yx ΘΘ ,  are some scalars. When the moment generating functions for 
~
'x  and 

~
'y  is 

inserted in the last equation, we get: 
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Now we interpret ),( yxg ΘΘ  and establish its connection with ),( yx ssΦ . The moment 

generating function }{),( ysxs
yx

yxeEss
+=Φ  is defined for sx and sy values for which the 

expectation result is finite. For univariate Gaussian distributions such as 
~
'x , )( '' xx sΦ  

function is defined for all complex 'xs  values. The same is also valid for 
~
'y  variable.  We 

can then say that ),( yxg ΘΘ  function is defined for arbitrary complex valued pairs of 

),( yx ΘΘ .   

 
Since the parameters of ),( yxg ΘΘ  function can be arbitrary, we choose to relabel them 

as xx s=Θ  and yy s=Θ  to get: 
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s
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and we get the following for the moment generating function of 
~
x  and 

~
y . 
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Next we use the fundamental theorem to express the distribution of 
~
x  and 

~
y . We can 

also invert ),( yx ssΦ  given in (2) to get the distribution of 
~
x  and 

~
y , but we prefer using 

the fundamental theorem instead of inverse Laplace transforms.  
 
 
Rewriting equation (1) in the matrix form, we get the following: 
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Here J is the Jacobian (which is J=ad) and A is a scalar whose exact value is not of 
interest for now.  
 
Finally we fix (a,c,d) given in (1) to some special values.  
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From (2’) and (3’), we get the moment generating function of jointly distributed Gaussian 
zero mean random variables 

~
x  and 

~
y .  

R2.5: Moment Generating Function of joint Gaussian r.v.’s x and y (non-zero mean) 
 
Let 

~
'x  and 

~
'y  be jointly distributed zero mean Gaussian random variables. The moment 

generating function of 
~
'x  and 

~
'y  is given in R2.4 equation (2’).  Define new random 

variables as  
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xxx

+=

+=

'

'
 

The moment generating function of 
~
x  and 

~

y can be written as follows 
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which is  
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Note that when 0=ρ  the moment generating function given in the last equation reduces 
to the one found for the independent variables in R2.4.  
 
R2.6: Correlation coefficient between x and y is ρ.  
We know that the correlation coefficient between random variables 

~
x  and 

~
y  by its 

definition is not effected by the mean values of 
~
x  and 

~
y . We also know that 

0

2

),(}{ ==↓Φ
∂∂

∂=
yx ssyx ss

yx
xyE . We take the moment generating function of joint 

Gaussian random variables (with zero mean) and calculate its partial derivative as 
follows: 
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e
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σρσσ
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+
∂
∂=
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When zero is substituted for xs  and ys , we get yxxyE σρσ=}{  and from here we see 

that 
yx

xyE

σσ
ρ }{= . Note that right hand side of the last relation is the definition of 

correlation coefficient for zero mean random variables. Therefore ρ appearing in the 
definition of the joint density is the actual value of correlation coefficient between 

~
x  and 

~
y . We call this parameter as the correlation coefficient.  

 
R2.7: If the correlation coefficient of jointly Gaussian distributed r.v.’s is zero, then 
random variables are independent.  
In R2.5 we have noted that “Note that when 0=ρ  the moment generating function given 
in the last equation reduces to the one found for the independent variables in R2.4.”, we 
have also shown that ρ the correlation coefficient between 

~
x  and 

~
y  in R2.5. This 

important result follows from the combination of R2.4 and R2.5. 
 
R2.7: The marginal density for x and y is Gaussian. 
The moment generating function for the marginal density for 

~
x  is }{ xsxeE . The same 

function can be expressed from the moment generating function of the joint distribution 

)2(
2

1 2222

}{),(
yyyxyxxxyxyx

ssssysxsysxs
yx eeeEss

σσρσσ ++++ ==Φ  by taking 0=ys . 

When this is done, we get 

22

2

1

}{
xx

xx
sxsxs eeeE

σ
=  which is the moment generating 

function of univariate Gaussian distribution with mean x and variance 2
xσ . Hence when 

we marginalize a joint Gaussian density, then we have an univariate Gaussian density.  
 
R2.8: The conditional density of x given y for jointly Gaussian variables.   
The density of 

~
x  conditioned on 

~
y  is also Gaussian. This result has significant 

importance in estimation theory.   
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i. Case of scalar random variables.  
Here 

~
x  and 

~
y  are jointly Gaussian distributed with the following density.  























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

 −
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−
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−
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2

2
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)1(2

1
exp

12

1
),(

y

y
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x

x
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xy

yyxx
yxf

σ
µ

σσ
µµ

ρ
σ

µ
ρρσπσ

The goal is to find )|(| xyf xy , 
)(

),(
)|(| xf

yxf
xyf

x

xy
xy = .  We explicitly calculate this 

ratio and show that the conditional density is the Gaussian distribution. Without any 
loss of generality, we assume 0== yx µµ  to simplify the algebra. If 0== yx µµ  is 

not true, then the following substitutions should be made in all expressions, 
)( xxx µ−→ and )( yxy µ−→ .  

Without a further ado, we start the calculation: 
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Let’s re-express the exponent in the numerator 




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
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
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ρ
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Note that in the second line we have added and subtracted the same term shown with 
curly brackets, i.e. 2{...} . This process is called completion to a square. Now 

)|(| xyf xy  can be easily written as follows: 
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Hence the conditional distribution is 












− 22)1(, y

x

y xN σρ
σ
σ

ρ .  

 
ii.  Case of Multiple Observations (Multivariate Gaussians)  

Here 
~
y  and 

~
x  is jointly Gaussian distributed. In this case, 

~
y  is a scalar Gaussian 

random variable and 
~
x  is a N x 1 Gaussian vector. As in the previous case, both 

~
y  

and 
~
x  are assumed to be zero mean without any loss of generality. The goal is to 

express 
)(

),(
)|(| xf

yxf
xyf

x

xy
xy = , that is “update” the a-priori pdf for 

~
y , that is ( )2,0N yσ   

given the observation vector 
~
x :  
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Here 
~
z  is the concatenation of 

~
x  and 

~
y , 

( ) 1 x 1N

Nx1 
x

z
+









=

y
. zC  and xC  is the 

covariance matrix of 
~
z  and  

~
x , respectively. Then as in the scalar the problem, the 

exponent in the numerator can be expressed as follows: 

[ ] 
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−  
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rC
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1
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2
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xx1
z y

yz
y

T
y

yT

σ  

In the equation above, }x{rx yEy =  is the cross-correlation of observations and .
~
y  The 

matrix inverse in the equation above can be taken using the partitioned matrix 
inversion lemma.  
 
 
There are various type of matrix inversion lemmas, they are abundant in books but for 
the sake of simplicity we present a screenshot of a webpage illustrating the form of 
lemma that we would like to implement.  
 



Prepared by: 
Çağatay Candan 

METU, Electrical Engin. Dept. 
Dec. 2011 

document  version:1.2 
 

 
Partitioned Matrix Inversion Lemma 

A screenshot from http://www.cs.nthu.edu.tw/~jang/book/addenda/matinv/matinv/  
 

 
 
Substituting A  with xC  and b  with yxr , we can express 1C−

z  as follows using the lemma: 
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Then )x|(x| yf y  can be written as: 
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In the last equation, K denotes a constant scalar. The ratio of 






− − zT 1
zCz

2

1
exp  and 








− − xCx
2

1
exp 1

x
T  can be written more explicitly as follows: 

[ ]

[ ]
[ ]










































−−=






























−



















−

=







−








− −
−

−
−

−

−

−

y
y

y
y

y
yz

xT

x
xT

T

x
T

T

x
 

00

0C
C x

2

1
exp

x
C 

00

0C
 x

2
1

exp

x
C x

2
1

exp

xCx
2
1

exp

Cz
2
1

exp 1
1

z

1
1

1
z

1

1
z

 



Prepared by: 
Çağatay Candan 

METU, Electrical Engin. Dept. 
Dec. 2011 

document  version:1.2 
 

With the substitution of 1C−
z , we get the following for the matrix in the quadratic product: 
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with y
T
yyk x

1
xx

2 rCr −−= σ .  Then the density becomes:  
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The last relation can be further reduced to  
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This not-so-friendly relation is our old friend in wolf’s clothing. To recognize our friend, 
we just need to define xCrˆ 1

xx
−= T

yy , and rewrite the same expression as follows: 
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Hence the conditional density is ( )y
T
yy

T
y x

1
xx

21
xx rCr,xCrN −− −σ . (This is one of the most  

important results for the estimation theory. This shows that the linear minimum mean 
square error estimator (a topic of EE503) is the conditional mean which is the optimal 
estimator for the general minimum mean square error estimation having no linearity 
constraints.)  


